Jessica S. Lee

jessicaslee.com • Jessica-lee@berkeley.edu • (415) 317-3077

Passionate about Building Effective Robots - Enthusiastic about Designing Mechanisms

Engineering Expert: UV Laser, IR Laser, 3D Printing, machine shop (lathing, milling...), surface mounting Hardware Designer: transmissions, packaging, cable routing, covers, mounts, mechanisms tied to kinematics Technical Software Proficient: Matlab, SolidWorks, AutoCad, Fusion, Illustrator, R, Python, CSS, JavaScript Collaborative and Impactful Communicator: Research writing, peer review, conference networking, public speaking, complex reporting, collaboration across ME, ECE, software, and integrative biology Bio-Inspired Robotics Specialist: Bio-inspired design, design and manufacturing robots of Smart Composite Microstructure (SCM) and Soft Pneumatic Actuators (SPA), rapid prototyping, experimental biology Outdoors Enthusiast: Scuba diving, skiing, Formation skydiving (ranked 2nd nationally), hiking, kayaking

Education – Mechanical Engineering

Ph.D. University of California, Berkeley

GPA: 3.92 Graduation May 2018 Advisor: Ronald Fearing, Alice Agogino, and Robert Full National Science Foundation Graduate Research Fellowship Recipient

M.S. University of California, Berkeley GPA: 3.92

Graduation May 2015

B.S. University of California, Santa Barbara

GPA: 3.80 (ranked 5th in class) Graduation June 2013

Experience

7/18 - 9/19	Mechatronics Engineer	Carbon Robotics
	Designed and implemented several elements for a 6 degree of freedo	om robot arm including:
	• A multi-turn hardstop for the robot's base, integrating electronic	S
	 New transmissions for the shoulder joint and wrist joint 	
	 Tests for the transmissions, including tracking system, fixture making and programming The internal and external cable routing system for the robot arm 	
	Reliability and repeatability testing, including precision test fixtu	res and programming
	Coordinated and collaborated with ECE and Software teams on multiple projects, making sure that the company timeline would progress as efficiently as possible	
9/13 - 5/18	Graduate Researcher	Jniversity of California, Berkeley
	Ronald Fearing's Biomimetic Millisystems Lab	
	 Constructed palm-sized cockroach-inspired running robot through SCM with IR laser, polymer forming, transmission assembly, 3D printing and surface mounting 	
	 Designed a clawed gripper to increase a jumping robot's traction and perching ability by kinematically coupling engagement/disengagement to robot's crouch/uncrouch 	
	• Robot now able to jump off 60° inclines and hold 7.5 times the robot's weight from a ceiling	
	Designed, built and tested over 6 different experiments using custom-made components	
	including 3 types of robots, 5 specialized robot feet, and mountin	ig for ATI force sensor
	Processed data from over 2000 data sets taken from experiment	ts using MATLAB
9/17 - 12/17	Visiting Researcher	NASA Ames Research Center
	Kenneth Cheung's Coded Structures Lab	
	• Assisted in new lattice building-block design with high stiffness to	weight ratios that can be
	assembled and disassembled to be reconfigured into any structu	ire needed
	 Designed and created a new spined end effector for robots to tra 	verse and manipulate lattice

	Kyu-jin Cho's BioRobotics Lab		
	 Designed and manufactured a bio-inspired compound foot with spines and foot pads 		
	 Manufactured 3cm flea-inspired jumping robot through Smart Memory Alloy (SMA) spring construction and Smart Composite Microstructure (SCM) with IR laser 		
	Robot able to jump on more surface types, on some surfaces jumps farther and faster		
6/14 - 7/14	Visiting Graduate Researcher École polytechnique fédérale de Lausanne, Switzerland Jaime Paik's Reconfigurable Robotics Lab		
	• Designed and manufactured Soft Pneumatic Actuators (SPAs) for an earthworm-inspired soft, crawling robot to traverse a 3-D space		
	Implemented new manufacturing strategies, increasing number of usable SPAs by 40%		
Undergraduate	experience		
10/12 - 5/13	 Undergraduate Researcher, Kim Turner's Mechanics of Microscale Systems (MEMS) Lab Used Micro-Electro-Mechanical Systems to fabricate gecko inspired dry adhesives 		
	 Designed and built a system to test the adhesives on a macro scale 		
6/12 - 9/12	Structures Engineering Intern, United Airlines		
8/11 - 6/12	 Created maintenance plans to prevent cracks in the Airbus fuselages L2 Engineering Intern, Intouch Health 		
	 Quality tested and built new prototypes of components for remote presence robots 		
8/10 - 4/11	• Created and implemented new procedures to improve the efficiency of the manufacturing Engineering Intern , Inogen		
2/08 - 6/08	 Surface mounted and tested various electrical components for the product International Robogames Competitor, initiated the robotics independent study program Designed and constructed a Sumobot using a PIC microcontroller, metal bending, milling, custom board, UV laser, proximity and line sensors – placed 4th 		
Publications			
2018	Lee, J.S., Plecnik, M., Yang, J and Fearing, R.S. Self-Engaging Spined Gripper with Dynamic Penetration and Release for Steep Jumps. IEEE/RSJ International Conference on Robotics and Automation (ICPA)		
2017	Lee, J.S., Fearing, R.S., Cho, K.J., and R. Full. <i>Crickets Jumping from Diverse Substrates Inspire Leg</i> Design in a Millirobot. Society for Integrative and Comparative Biology (SICB)		
2016	Lee, J., Fearing, R. S., Cho, K. <i>Compound Foot for Increased Millirobot Jumping Ability</i> . Climbing and Walking Robots and Support Technologies for Mobile Machines (CLAWAR)		
2015	Lee, J.S., and Fearing, R.S. Anisotropic collapsible leg spines for increased millirobot traction. (ICRA)		
2015	Lee, J.S., Haldane, D., Fearing, R., and R. Full. <i>Biologically inspired collapsible spines increase performance in legged robot.</i> (SICB)		
2015	Haldane, D.W., Lee, J. S., et al. Integrated Manufacture of Exoskeletons and Sensing Structures for Folded Millirobots. Journal of Mechanisms and Robotics (JMR)		

Seoul National University, South Korea

Fellowships and Honors

7/15 - 9/15

Visiting Graduate Researcher

• NSF GRFP - National Science Foundation Graduate Research Fellowship Program

- NSF IGERT Integrative Graduate Education and Research Trainee
- **Division Winner of IET PATW** Institution of Engineering and Technology Present Around the World (PATW) Competition 2014/2015
- College of Engineering Dean's Honors Program at UCSB, Member of NSCS

Outreach and Leadership

- Networking Chair for Graduate Women in Engineering (GWE)
- Networking Chair for Women in Computer Science and Engineering (WiCSE)
- **Co-President** of Science and Engineering Community Outreach (SECO)
- Robotics Lead for Electrical Engineering Outreach
- Tutoring Chair for Tau Beta Pi (Engineering Honor Society)